Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- machine learning
- statistics
- 강화학습
- 유니티
- 모두를 위한 RL
- David Silver
- 딥러닝
- Linear algebra
- 판다스
- Deep Learning
- list
- Hessian Matrix
- Jacobian Matrix
- paper
- pandas
- 데이터 분석
- rl
- 리스트
- reinforcement learning
- Series
- optimization
- 김성훈 교수님
- Laplacian
- ML-Agent
- 논문
- convex optimization
- Python Programming
- neural network
- unity
- 사이킷런
Archives
목록MinMaxScaler (1)
RL Researcher
피처 스케일링과 정규화(문제점 작성 X)
1. 피처 스케일링 서로 다른 변수의 값 범위를 일정한 수준으로 맞추는 작업을 피처 스케일링(feature scaling)이라고 합니다. 대표적인 방법으로 표준화(Standardization)와 정규화(Normalization)가 있습니다. 표준화(Standardization)는 데이터의 피처 각각 평균이 0이고 분산이 1인 Gaussian 정규분포를 가진 값으로 변환하는 것을 의미합니다. 표준화를 통해 변환될 피처 x의 새로운 i번째 데이터를 x(i)(new)라고 한다면 이 값은 원래 값에서 피처 x의 평균을 뺀 값을 피처 x의 표준편차로 나눈 값으로 계산할 수 있습니다. $$x_{i}(new) = \frac{x_{i}-mean(x)}{stdev(x)}$$ 일반적으로 정규화는 서로 다른 피처의 크기를 ..
Machine-Learning/Preprocessing
2021. 1. 17. 02:52