| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 |
- 유니티
- 모두를 위한 RL
- David Silver
- 리스트
- machine learning
- ML-Agent
- pandas
- 데이터 분석
- Python Programming
- paper
- Jacobian Matrix
- 김성훈 교수님
- convex optimization
- Hessian Matrix
- unity
- Deep Learning
- neural network
- list
- Series
- optimization
- 사이킷런
- 강화학습
- statistics
- Linear algebra
- rl
- reinforcement learning
- 논문
- 딥러닝
- Laplacian
- 판다스
목록optimization (2)
RL Researcher
Convex sets affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual cones and generalized inequalities Affine set 아래에 그림의 $x_{1}$과 $x_{2}$를 통하는 모든 점들을 Affine set이라고 부름. $$x = \theta x_{1}+(1-\theta)x_{2}\ \ \ \ \ (\theta \in R)$$ affine set : set에서 두 개의 다른 점을 통과하는 선을 포함함. example : linear equations $\le..
Introduction mathematical optimization (수학적 최적화) least-squares and linear programming (최소 제곱과 선형 계획법) convex optimization (볼록 최적화) example (예시) course goals and topics (코스 목표 및 주제) nonlinear optimization (비선형 최적화) brief history of convex optimization (볼록 최적화의 간략한 역사) Mathematical Optimization Optimization Problem의 정의 : $x = (x_{1}, ..., x_{n})$ : Optimization variables(최적화 변수), Decision variable..