Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Series
- optimization
- 딥러닝
- 사이킷런
- reinforcement learning
- Hessian Matrix
- 리스트
- unity
- statistics
- 판다스
- Jacobian Matrix
- Python Programming
- Linear algebra
- 유니티
- ML-Agent
- 데이터 분석
- neural network
- 강화학습
- 논문
- pandas
- rl
- Laplacian
- Deep Learning
- David Silver
- 모두를 위한 RL
- paper
- convex optimization
- list
- machine learning
- 김성훈 교수님
Archives
목록OneHotEncoder (1)
RL Researcher
Data Encoding
1. Data Encoding 머신러닝을 위한 대표적인 인코딩 방식은 레이블 인코딩(Label encoding)과 원-핫 인코딩(One Hot encoding)이 있습니다. 레이블 인코딩(Label encoding) Label encoding은 카테고리 피처를 코드형 숫자 값으로 변환하는 것입니다. 예를 들어 상품 데이터의 상품 구분이 TV,냉장고, 전자레인지, 컴퓨터, 선풍기, 믹서 값으로 되어 있다면 TV : 1, 냉장고 : 2, 전자레인지 : 3, 컴퓨터 : 4, 선풍기 : 5, 믹서 : 6과 같은 숫자형 값으로 변환하는 것입니다. 2. Label encoding Label encoding을 코드로 구현해 보겠습니다. from sklearn.preprocessing import LabelEncode..
Machine-Learning/Preprocessing
2021. 1. 16. 03:31