일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 모두를 위한 RL
- Jacobian Matrix
- 판다스
- convex optimization
- Laplacian
- Linear algebra
- paper
- statistics
- Deep Learning
- unity
- Python Programming
- 데이터 분석
- Series
- David Silver
- 논문
- optimization
- list
- neural network
- machine learning
- 사이킷런
- pandas
- 김성훈 교수님
- rl
- Hessian Matrix
- 리스트
- ML-Agent
- reinforcement learning
- 딥러닝
- 강화학습
- 유니티
목록optimization (2)
RL Researcher
Convex sets affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual cones and generalized inequalities Affine set 아래에 그림의 $x_{1}$과 $x_{2}$를 통하는 모든 점들을 Affine set이라고 부름. $$x = \theta x_{1}+(1-\theta)x_{2}\ \ \ \ \ (\theta \in R)$$ affine set : set에서 두 개의 다른 점을 통과하는 선을 포함함. example : linear equations $\le..
Introduction mathematical optimization (수학적 최적화) least-squares and linear programming (최소 제곱과 선형 계획법) convex optimization (볼록 최적화) example (예시) course goals and topics (코스 목표 및 주제) nonlinear optimization (비선형 최적화) brief history of convex optimization (볼록 최적화의 간략한 역사) Mathematical Optimization Optimization Problem의 정의 : $x = (x_{1}, ..., x_{n})$ : Optimization variables(최적화 변수), Decision variable..